Get The Memo.
IQ chart
Download IQ chart (PDF – A4 printable)
This chart is also featured in the best-selling book, Bright (a copy of this book was even sent to the moon!).
To cite this chart: Thompson, A. D. (2016). Bright: Seeing superstars, listening to their worlds, and moving out of the way. Life Architect.
IQ mental age
Chronological & Mental Ages of Gifted Children
Download Mental Ages of Gifted Children chart (PDF – A4 printable)
To cite this chart: Thompson, A. D. (2019). Chronological & Mental Ages of Gifted Children. Life Architect.
Summary IQ percentile and rarity
IQ table (uses 15SD as in Wechsler)
Most numbers have been rounded to nearest significant figure.
IQ | Percentile | Top % | 1 in… |
---|---|---|---|
120 | 90.87 | 9.13 | 11 |
125 | 95.2 | 4.8 | 21 |
130 | 97.7 | 2.3 | 44 |
135 | 99 | 1 | 102 |
140 | 99.6 | 0.4 | 261 |
145 | 99.86 | 0.14 | 741 |
150 | 99.95 | 0.05 | 2,330 |
155 | 99.98 | 0.02 | 8,137 |
160 | 99.996 | 0.004 | 31,560 |
165 | 99.9992 | 0.0008 | 136,074 |
170 | 99.9998 | 0.0002 | 652,598 |
175 | 99.99997 | 0.00003 | 3.5 million |
180 | 99.999995 | 0.000005 | 20.7 million |
185 | 99.9999992 | 0.0000008 | 137 million |
190 | 99.999999901 | 0.000000099 | 1 billion |
195 | 99.99999998 | 0.00000002 | 8.3 billion |
200 | 99.999999998 | 0.000000002 | 76 billion |
IQ | Percentile | Top % | 1 in… |
Convert confidence interval to percentile and IQ score (Wechsler)
From the WISC-V technical report (August, 2015).
FSIQ | Percentile Rank |
90% Confidence Interval |
95% Confidence Interval |
---|---|---|---|
120 | 91 | 114-124 | 113-125 |
125 | 95 | 119-129 | 118-130 |
130 | 98 | 123-134 | 122-135 |
135 | 99 | 128-138 | 127-139 |
140 | 99.6 | 133-143 | 132-144 |
146 | 99.9 | 138-149 | 137-150 |
150 | >99.9 | 142-153 | 141-154 |
155 | >99.9 | 147-157 | 146-158 |
FSIQ | Percentile Rank |
90% Confidence Interval |
95% Confidence Interval |
Show more detail for confidence interval to percentile and score
FSIQ | Percentile Rank |
90% Confidence Interval |
95% Confidence Interval |
---|---|---|---|
120 | 91 | 114-124 | 113-125 |
122 | 93 | 116-126 | 115-127 |
124 | 95 | 118-128 | 117-129 |
125 | 95 | 119-129 | 118-130 |
126 | 96 | 119-130 | 118-131 |
127 | 96 | 120-131 | 119-132 |
128 | 97 | 121-132 | 120-133 |
130 | 98 | 123-134 | 122-135 |
131 | 98 | 124-135 | 123-136 |
132 | 98 | 125-136 | 124-137 |
133 | 99 | 126-137 | 125-138 |
134 | 99 | 127-138 | 126-139 |
135 | 99 | 128-138 | 127-139 |
136 | 99 | 129-139 | 128-140 |
137 | 99 | 130-140 | 129-141 |
138 | 99 | 131-141 | 130-142 |
140 | 99.6 | 133-143 | 132-144 |
141 | 99.7 | 134-144 | 133-145 |
142 | 99.7 | 135-145 | 135-146 |
143 | 99.8 | 136-146 | 135-147 |
144 | 99.8 | 137-147 | 136-148 |
146 | 99.9 | 138-149 | 137-150 |
147 | 99.9 | 139-150 | 138-151 |
148 | 99.9 | 140-151 | 139-152 |
149 | 99.9 | 141-152 | 140-153 |
150 | >99.9 | 142-153 | 141-154 |
151 | >99.9 | 143-154 | 142-155 |
152 | >99.9 | 144-155 | 143-156 |
153 | >99.9 | 145-156 | 144-157 |
154 | >99.9 | 146-157 | 145-158 |
155 | >99.9 | 147-157 | 146-158 |
FSIQ | Percentile Rank |
90% Confidence Interval |
95% Confidence Interval |
Full IQ Percentile and Rarity Chart
The table below is an archive backup of the IQ table originally published by Rodrigo de la Jara at iqcomparisonsite.com/iqtable.aspx [website is down as of Oct/2021].
These are IQs, their percentiles, and rarity on a 15 SD (e.g. Wechsler) and 16 SD (e.g. Stanford-Binet) scale. They were calculated using the NORMDIST function in Excel. The number of decimal places for the rarity was varied in the hope it might be useful. You can see why presently nobody should be able to get a deviation IQ higher than 195 (or 201 on the 16 SD scale). There are not enough people in the world to ‘beat’. Note that rarities given are of people that have a certain IQ or higher. Some people might find it more useful to know the rarity of people that have a certain IQ or lower. In that case use this example as a guide: If you want to know how many people have IQs of 84 or lower, look at the rarity of people that have an IQ of 116 or higher. (100 – 84 = 16. 100 + 16 = 116).
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
202
|
99.9999999995%
|
190,057,377,928 |
99.9999999908%
|
10,881,440,294 |
201
|
99.9999999992%
|
119,937,672,336 |
99.9999999862%
|
7,252,401,045 |
200
|
99.9999999987%
|
76,017,176,740 |
99.9999999794%
|
4,852,159,346 |
199
|
99.9999999979%
|
48,390,420,202 |
99.9999999693%
|
3,258,706,819 |
198
|
99.9999999968%
|
30,938,221,975 |
99.9999999545%
|
2,196,908,409 |
197
|
99.9999999950%
|
19,866,426,228 |
99.9999999327%
|
1,486,736,899 |
196
|
99.9999999922%
|
12,812,462,045 |
99.9999999010%
|
1,009,976,678 |
195
|
99.9999999880%
|
8,299,126,114 |
99.9999998548%
|
688,720,101 |
194
|
99.9999999815%
|
5,399,067,340 |
99.9999997879%
|
471,441,334 |
193
|
99.9999999717%
|
3,527,693,270 |
99.9999996913%
|
323,940,499 |
192
|
99.9999999568%
|
2,314,980,850 |
99.9999995524%
|
223,436,817 |
191
|
99.9999999345%
|
1,525,765,721 |
99.9999993536%
|
154,701,783 |
190
|
99.9999999010%
|
1,009,976,678 |
99.9999990699%
|
107,519,234 |
189
|
99.9999998511%
|
671,455,130 |
99.9999986669%
|
75,011,253 |
188
|
99.9999997770%
|
448,336,263 |
99.9999980964%
|
52,530,944 |
187
|
99.9999996674%
|
300,656,786 |
99.9999972920%
|
36,927,646 |
186
|
99.9999995062%
|
202,496,482 |
99.9999961624%
|
26,057,620 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
185
|
99.9999992699%
|
136,975,305 |
99.9999945820%
|
18,457,107 |
184
|
99.9999989254%
|
93,056,001 |
99.9999923799%
|
13,123,126 |
183
|
99.9999984250%
|
63,492,548 |
99.9999893231%
|
9,366,012 |
182
|
99.9999977016%
|
43,508,721 |
99.9999850966%
|
6,709,882 |
181
|
99.9999966604%
|
29,943,596 |
99.9999792755%
|
4,825,216 |
180
|
99.9999951684%
|
20,696,863 |
99.9999712895%
|
3,483,046 |
179
|
99.9999930398%
|
14,367,357 |
99.9999603760%
|
2,523,720 |
178
|
99.9999900166%
|
10,016,587 |
99.9999455198%
|
1,835,530 |
177
|
99.9999857417%
|
7,013,455 |
99.9999253755%
|
1,340,043 |
176
|
99.9999797237%
|
4,931,877 |
99.9998981672%
|
982,001 |
175
|
99.9999712895%
|
3,483,046 |
99.9998615605%
|
722,337 |
174
|
99.9999595211%
|
2,470,424 |
99.9998125011%
|
533,337 |
173
|
99.9999431733%
|
1,759,737 |
99.9997470088%
|
395,271 |
172
|
99.9999205647%
|
1,258,887 |
99.9996599197%
|
294,048 |
171
|
99.9998894360%
|
904,454 |
99.9995445629%
|
219,569 |
170
|
99.9998467663%
|
652,598 |
99.9993923584%
|
164,571 |
169
|
99.9997885357%
|
472,893 |
99.9991923180%
|
123,811 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
168
|
99.9997094213%
|
344,141 |
99.9989304314%
|
93,496 |
167
|
99.9996024097%
|
251,515 |
99.9985889129%
|
70,867 |
166
|
99.9994583047%
|
184,606 |
99.9981452833%
|
53,917 |
165
|
99.9992651083%
|
136,074 |
99.9975712563%
|
41,174 |
164
|
99.9990072440%
|
100,730 |
99.9968313965%
|
31,560 |
163
|
99.9986645903%
|
74,883 |
99.9958815099%
|
24,281 |
162
|
99.9982112841%
|
55,906 |
99.9946667250%
|
18,750 |
161
|
99.9976142490%
|
41,916 |
99.9931192192%
|
14,533 |
160
|
99.9968313965%
|
31,560 |
99.9911555410%
|
11,307 |
159
|
99.9958094411%
|
23,863 |
99.9886734737%
|
8,829 |
158
|
99.9944812644%
|
18,120 |
99.9855483883%
|
6,920 |
157
|
99.9927627566%
|
13,817 |
99.9816290270%
|
5,443 |
156
|
99.9905490555%
|
10,581 |
99.9767326626%
|
4,298 |
155
|
99.9877101029%
|
8,137 |
99.9706395788%
|
3,406 |
154
|
99.9840854286%
|
6,284 |
99.9630868216%
|
2,709 |
153
|
99.9794780761%
|
4,873 |
99.9537611786%
|
2,163 |
152
|
99.9736475807%
|
3,795 |
99.9422913506%
|
1,733 |
151
|
99.9663019177%
|
2,968 |
99.9282392963%
|
1,394 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
150
|
99.9570883466%
|
2,330 |
99.9110907427%
|
1,125 |
149
|
99.9455830880%
|
1,838 |
99.8902448799%
|
911 |
148
|
99.9312797919%
|
1,455 |
99.8650032777%
|
741 |
147
|
99.9135767802%
|
1,157 |
99.8345580959%
|
604 |
146
|
99.8917630764%
|
924 |
99.7979796890%
|
495 |
145
|
99.8650032777%
|
741 |
99.7542037453%
|
407 |
144
|
99.8323213712%
|
596 |
99.7020181412%
|
336 |
143
|
99.7925836483%
|
482 |
99.6400497338%
|
278 |
142
|
99.7444809358%
|
391 |
99.5667513617%
|
231 |
141
|
99.6865104294%
|
319 |
99.4803893690%
|
192 |
140
|
99.6169574875%
|
261 |
99.3790320141%
|
161 |
139
|
99.5338778217%
|
215 |
99.2605391688%
|
135 |
138
|
99.4350805958%
|
177 |
99.1225537500%
|
114 |
137
|
99.3181130218%
|
147 |
98.9624953632%
|
96 |
136
|
99.1802471131%
|
122 |
98.7775566587%
|
82 |
135
|
99.0184693146%
|
102 |
98.5647029151%
|
70 |
134
|
98.8294737819%
|
85 |
98.3206753694%
|
60 |
133
|
98.6096601092%
|
72 |
98.0419987942%
|
51 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
132
|
98.3551363216%
|
61 |
97.7249937964%
|
44 |
131
|
98.0617279292%
|
52 |
97.3657942589%
|
38 |
130
|
97.7249937964%
|
44 |
96.9603702812%
|
33 |
129
|
97.3402495072%
|
38 |
96.5045568849%
|
29 |
128
|
96.9025987934%
|
32 |
95.9940886433%
|
25 |
127
|
96.4069734486%
|
28 |
95.4246402670%
|
22 |
126
|
95.8481819706%
|
24 |
94.7918730337%
|
19 |
125
|
95.2209669590%
|
21 |
94.0914867949%
|
17 |
124
|
94.5200710546%
|
18 |
93.3192771207%
|
15 |
123
|
93.7403109348%
|
16 |
92.4711969715%
|
13 |
122
|
92.8766585983%
|
14 |
91.5434221090%
|
12 |
121
|
91.9243288744%
|
12 |
90.5324192858%
|
11 |
120
|
90.8788718026%
|
11 |
89.4350160914%
|
9 |
119
|
89.7362682436%
|
10 |
88.2484711894%
|
9 |
118
|
88.4930268282%
|
9 |
86.9705435536%
|
8 |
117
|
87.1462801289%
|
8 |
85.5995592220%
|
7 |
116
|
85.6938777630%
|
7 |
84.1344740241%
|
6 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
115
|
84.1344740241%
|
6.30297414356 |
82.5749307167%
|
5.7388581000 |
114
|
82.4676075848%
|
5.70372814115 |
80.9213089868%
|
5.2414497373 |
113
|
80.6937708458%
|
5.17967538878 |
79.1747668425%
|
4.8018670064 |
112
|
78.8144666062%
|
4.72020213705 |
77.3372720270%
|
4.4125314534 |
111
|
76.8322499196%
|
4.31634490415 |
75.4116222443%
|
4.0669620824 |
110
|
74.7507532660%
|
3.96051419092 |
73.4014531849%
|
3.7596038872 |
109
|
72.5746935061%
|
3.64626736341 |
71.3112335745%
|
3.4856849025 |
108
|
70.3098594977%
|
3.36812148102 |
69.1462467364%
|
3.2410967685 |
107
|
67.9630797074%
|
3.12139865776 |
66.9125584538%
|
3.0222947235 |
106
|
65.5421696587%
|
2.90209798497 |
64.6169712244%
|
2.8262136810 |
105
|
63.0558595794%
|
2.70678919205 |
62.2669653200%
|
2.6501976543 |
104
|
60.5137031432%
|
2.53252414027 |
59.8706273779%
|
2.4919402788 |
103
|
57.9259687167%
|
2.37676298063 |
57.4365675495%
|
2.3494345790 |
102
|
55.3035150084%
|
2.23731239758 |
54.9738265155%
|
2.2209304558 |
101
|
52.6576534466%
|
2.11227383685 |
52.4917739192%
|
2.1048986302 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
100
|
49.9999999782%
|
1.99999999913 |
49.9999999782%
|
1.9999999991 |
99
|
47.3423465534%
|
1.89905917668 |
47.5082260808%
|
1.9050604034 |
98
|
44.6964849916%
|
1.80820333002 |
45.0261734845%
|
1.8190474693 |
97
|
42.0740312833%
|
1.72634143572 |
42.5634324505%
|
1.7410511155 |
96
|
39.4862968568%
|
1.65251826951 |
40.1293726221%
|
1.6702681161 |
95
|
36.9441404206%
|
1.58589543727 |
37.7330346800%
|
1.6059880144 |
94
|
34.4578303413%
|
1.52573527121 |
35.3830287756%
|
1.5475810473 |
93
|
32.0369202926%
|
1.47138711828 |
33.0874415462%
|
1.4944877660 |
92
|
29.6901405023%
|
1.42227563409 |
30.8537532636%
|
1.4462100941 |
91
|
27.4253064939%
|
1.37789076562 |
28.6887664255%
|
1.4023036061 |
90
|
25.2492467340%
|
1.33777916116 |
26.5985468151%
|
1.3623708477 |
89
|
23.1677500804%
|
1.30153679093 |
24.5883777557%
|
1.3260555472 |
88
|
21.1855333938%
|
1.26880259813 |
22.6627279730%
|
1.2930375921 |
87
|
19.3062291542%
|
1.23925302972 |
20.8252331575%
|
1.2630286642 |
86
|
17.5323924152%
|
1.21259732068 |
19.0786910132%
|
1.2357684429 |
85
|
15.8655259759%
|
1.18857342558 |
17.4250692833%
|
1.2110213007 |
84
|
14.3061222370%
|
1.16694450771 |
15.8655259759%
|
1.1885734256 |
83
|
12.8537198711%
|
1.14749590978 |
14.4004407780%
|
1.1682303146 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
82
|
11.5069731718%
|
1.13003254137 |
13.0294564464%
|
1.1498145914 |
81
|
10.2637317564%
|
1.11437662784 |
11.7515288106%
|
1.1331641064 |
80
|
9.1211281974%
|
1.10036577278 |
10.5649839086%
|
1.1181302847 |
79
|
8.0756711256%
|
1.08785129274 |
9.4675807142%
|
1.1045766896 |
78
|
7.1233414017%
|
1.07669678808 |
8.4565778910%
|
1.0923777776 |
77
|
6.2596890652%
|
1.06677691809 |
7.5288030285%
|
1.0814178174 |
76
|
5.4799289454%
|
1.05797635237 |
6.6807228793%
|
1.0715899553 |
75
|
4.7790330410%
|
1.05018887325 |
5.9085132051%
|
1.0627954070 |
74
|
4.1518180294%
|
1.04331660699 |
5.2081269663%
|
1.0549427583 |
73
|
3.5930265514%
|
1.03726936365 |
4.5753597330%
|
1.0479473616 |
72
|
3.0974012066%
|
1.03196406748 |
4.0059113567%
|
1.0417308129 |
71
|
2.6597504928%
|
1.02732426212 |
3.4954431151%
|
1.0362204981 |
70
|
2.2750062036%
|
1.02327967611 |
3.0396297188%
|
1.0313491967 |
69
|
1.9382720708%
|
1.01976583639 |
2.6342057411%
|
1.0270547348 |
68
|
1.6448636784%
|
1.01672371917 |
2.2750062036%
|
1.0232796761 |
67
|
1.3903398908%
|
1.01409942889 |
1.9580012058%
|
1.0199710454 |
66
|
1.1705262181%
|
1.01184389811 |
1.6793246306%
|
1.0170800762 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
65
|
0.9815306854%
|
1.00991260208 |
1.4352970849%
|
1.0145619785 |
64
|
0.8197528869%
|
1.00826528377 |
1.2224433413%
|
1.0123757196 |
63
|
0.6818869782%
|
1.006865686 |
1.0375046368%
|
1.0104838164 |
62
|
0.5649194042%
|
1.00568128874 |
0.8774462500%
|
1.0088521352 |
61
|
0.4661221783%
|
1.00468305052 |
0.7394608312%
|
1.0074496959 |
60
|
0.3830425125%
|
1.0038451537 |
0.6209679859%
|
1.0062484809 |
59
|
0.3134895706%
|
1.00314475418 |
0.5196106310%
|
1.0052232469 |
58
|
0.2555190642%
|
1.00256173637 |
0.4332486383%
|
1.0043513385 |
57
|
0.2074163517%
|
1.00207847461 |
0.3599502662%
|
1.0036125059 |
56
|
0.1676786288%
|
1.00167960262 |
0.2979818588%
|
1.0029887244 |
55
|
0.1349967223%
|
1.0013517921 |
0.2457962547%
|
1.0024640190 |
54
|
0.1082369236%
|
1.00108354203 |
0.2020203110%
|
1.0020242926 |
53
|
0.0864232198%
|
1.00086497974 |
0.1654419041%
|
1.0016571607 |
52
|
0.0687202081%
|
1.00068767465 |
0.1349967223%
|
1.0013517921 |
51
|
0.0544169120%
|
1.0005444654 |
0.1097551201%
|
1.0010987571 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
50
|
0.0429116534%
|
1.00042930075 |
0.0889092573%
|
1.0008898838 |
49
|
0.0336980823%
|
1.00033709442 |
0.0717607037%
|
1.0007181224 |
48
|
0.0263524193%
|
1.00026359366 |
0.0577086494%
|
1.0005774197 |
47
|
0.0205219239%
|
1.00020526136 |
0.0462388214%
|
1.0004626021 |
46
|
0.0159145714%
|
1.00015917105 |
0.0369131784%
|
1.0003692681 |
45
|
0.0122898971%
|
1.00012291408 |
0.0293604212%
|
1.0002936904 |
44
|
0.0094509445%
|
1.00009451838 |
0.0232673374%
|
1.0002327275 |
43
|
0.0072372434%
|
1.00007237767 |
0.0183709730%
|
1.0001837435 |
42
|
0.0055187356%
|
1.0000551904 |
0.0144516117%
|
1.0001445370 |
41
|
0.0041905589%
|
1.00004190735 |
0.0113265263%
|
1.0001132781 |
40
|
0.0031686035%
|
1.00003168704 |
0.0088444590%
|
1.0000884524 |
39
|
0.0023857510%
|
1.00002385808 |
0.0068807808%
|
1.0000688125 |
38
|
0.0017887159%
|
1.00001788748 |
0.0053332750%
|
1.0000533356 |
37
|
0.0013354097%
|
1.00001335428 |
0.0041184901%
|
1.0000411866 |
36
|
0.0009927560%
|
1.00000992766 |
0.0031686035%
|
1.0000316870 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
35
|
0.0007348917%
|
1.00000734897 |
0.0024287437%
|
1.0000242880 |
34
|
0.0005416953%
|
1.00000541698 |
0.0018547167%
|
1.0000185475 |
33
|
0.0003975903%
|
1.00000397592 |
0.0014110871%
|
1.0000141111 |
32
|
0.0002905787%
|
1.0000029058 |
0.0010695686%
|
1.0000106958 |
31
|
0.0002114643%
|
1.00000211465 |
0.0008076820%
|
1.0000080769 |
30
|
0.0001532337%
|
1.00000153234 |
0.0006076416%
|
1.0000060765 |
29
|
0.0001105640%
|
1.00000110564 |
0.0004554371%
|
1.0000045544 |
28
|
0.0000794353%
|
1.00000079435 |
0.0003400803%
|
1.0000034008 |
27
|
0.0000568267%
|
1.00000056827 |
0.0002529912%
|
1.0000025299 |
26
|
0.0000404789%
|
1.00000040479 |
0.0001874989%
|
1.0000018750 |
25
|
0.0000287105%
|
1.00000028711 |
0.0001384395%
|
1.0000013844 |
24
|
0.0000202763%
|
1.00000020276 |
0.0001018328%
|
1.0000010183 |
23
|
0.0000142583%
|
1.00000014258 |
0.0000746245%
|
1.0000007462 |
22
|
0.0000099834%
|
1.00000009983 |
0.0000544802%
|
1.0000005448 |
21
|
0.0000069602%
|
1.0000000696 |
0.0000396240%
|
1.0000003962 |
20
|
0.0000048317%
|
1.00000004832 |
0.0000287105%
|
1.0000002871 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
19
|
0.0000033396%
|
1.0000000334 |
0.0000207245%
|
1.0000002072 |
18
|
0.0000022984%
|
1.00000002298 |
0.0000149034%
|
1.0000001490 |
17
|
0.0000015750%
|
1.00000001575 |
0.0000106769%
|
1.0000001068 |
16
|
0.0000010746%
|
1.00000001075 |
0.0000076201%
|
1.0000000762 |
15
|
0.0000007301%
|
1.0000000073 |
0.0000054180%
|
1.0000000542 |
14
|
0.0000004938%
|
1.00000000494 |
0.0000038376%
|
1.0000000384 |
13
|
0.0000003326%
|
1.00000000333 |
0.0000027080%
|
1.0000000271 |
12
|
0.0000002230%
|
1.00000000223 |
0.0000019036%
|
1.0000000190 |
11
|
0.0000001489%
|
1.00000000149 |
0.0000013331%
|
1.0000000133 |
10
|
0.0000000990%
|
1.00000000099 |
0.0000009301%
|
1.0000000093 |
9
|
0.0000000655%
|
1.00000000066 |
0.0000006464%
|
1.0000000065 |
8
|
0.0000000432%
|
1.00000000043 |
0.0000004476%
|
1.0000000045 |
7
|
0.0000000283%
|
1.00000000028 |
0.0000003087%
|
1.0000000031 |
6
|
0.0000000185%
|
1.00000000019 |
0.0000002121%
|
1.0000000021 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
5
|
0.0000000120%
|
1.00000000012 |
0.0000001452%
|
1.0000000015 |
4
|
0.0000000078%
|
1.00000000008 |
0.0000000990%
|
1.0000000010 |
3
|
0.0000000050%
|
1.00000000005 |
0.0000000673%
|
1.0000000007 |
2
|
0.0000000032%
|
1.00000000003 |
0.0000000455%
|
1.0000000005 |
1
|
0.0000000021%
|
1.00000000002 |
0.0000000307%
|
1.0000000003 |
Get The Memo
by Dr Alan D. Thompson · Be inside the lightning-fast AI revolution.Informs research at Apple, Google, Microsoft · Bestseller in 142 countries.
Artificial intelligence that matters, as it happens, in plain English.
Get The Memo.
Dr Alan D. Thompson is an AI expert and consultant, advising Fortune 500s and governments on post-2020 large language models. His work on artificial intelligence has been featured at NYU, with Microsoft AI and Google AI teams, at the University of Oxford’s 2021 debate on AI Ethics, and in the Leta AI (GPT-3) experiments viewed more than 5 million times. A contributor to the fields of human intelligence and peak performance, he has held positions as chairman for Mensa International, consultant to GE and Warner Bros, and memberships with the IEEE and IET. Technical highlights.
This page last updated: 29/Nov/2023. https://lifearchitect.ai/visualising-brightness/↑