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Abstract

GPT-NeoX-20B is a 20 billion parameter autoregressive language model whose weights will be made
freely and openly available to the public through a permissive license. It is, to the best of our knowledge,
the largest dense autoregressive model that has publicly available weights. In this paper, we describe
the model architecture and training, evaluate its performance, and discuss the broader impacts of
its release. We are open-sourcing the training and evaluation code, as well as the model weights, at
https://github.com/EleutherAI/gpt-neox.

1 Introduction
Over the past several years there has been an explosion in research surrounding large language models
(LLMs) for natural language processing, catalyzed largely by the impressive performance of transformer based
language models like BERT [Devlin et al., 2018], GPT-2 [Radford et al., 2019], GPT-3 [Brown et al., 2020],
and T5 [Raffel et al., 2019]. One of the most impactful outcomes of this research has been the finding that
the performance of LLMs scales predictably as a power-law with the number of parameters, with architecture
details such as width/depth ratio having a minimal effect within a wide range [Kaplan et al., 2020]. A
consequence of this has been an abundance of research focusing on scaling transformer models up to never
before seen scales, resulting in models of up to 530B parameters [Smith et al., 2022], a scale that would have
been almost unthinkable just a few years prior.

Today, there are dozens of publicly acknowledged LLMs in existence. The largest have more than two
orders of magnitude more parameters than GPT-2, and even at that scale there are nearly a dozen different
models. However, these models are almost universally the protected intellectual property of large tech
companies, and are gated behind a commercial API, available only upon request, or not available for outsider
use at all. To our knowledge, the only freely and publicly available dense autoregressive language models
larger than GPT-2 are GPT-Neo (2.7B parameters) [Black et al., 2021b], GPT-J-6B [Wang and Komatsuzaki,
2021], Megatron-11B1, Pangu-α-13B [Zeng et al., 2021], and the recently released Fairseq 6.7 and 13B [Artetxe
et al., 2021] models.

In this paper, we release GPT-NeoX-20B, motivated by the belief that open access to LLMs is critical
to advancing research in a wide range of areas—particularly in AI safety, mechanistic interpretability, and
the study of how LLM capabilities scale. Many of the most interesting capabilities of LLMs only emerge
above a certain number of parameters, and they have many properties that simply cannot be studied in
smaller models. Although safety is often cited as a justification for keeping model weights private, we believe
this is insufficient to prevent misuse, and is largely a limitation on the ability to probe and study LLMs for
researchers not based at the small number of organizations that have access to state of the art language
models.

∗Lead authors. Authors after the first three are listed in alphabetical order. See Appendix A for individual contribution
details.

1https://github.com/pytorch/fairseq/tree/main/examples/megatron_11b
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In the following sections, we will give a broad overview of GPT-NeoX-20B’s architecture and training
hyperparameters, as well as detailing the hardware and software setup used for training and evaluating, and
the choices made when designing the dataset and tokenization. We also address of some of the difficulties
and unknowns we encountered in training such a large model, and close by dissecting the broader impacts its
release may have.

We are making the model weights at evenly spaced 1000 step intervals throughout the whole of training
available, as well as open-sourcing the training and evaluation code, at https://github.com/EleutherAI/
gpt-neox. We hope that making a wide range of checkpoints throughout training freely available will facilitate
research into the training dynamics of LLMs, as well as being impactful in the aforementioned areas of AI
safety and interpretability.

2 Model Design and Implementation
GPT-NeoX-20B is an autoregressive transformer decoder model whose architecture largely follows that of
GPT-3 [Brown et al., 2020], with a few notable deviations described below.

Params Non-embedding Layers Model Dim Heads Batch Size Learning Rate

20 B 19.9 B 44 6144 64 3.1 M 9.7× 10−5

Table 1: “Params” refers to all parameters while “Non-embedding” refers to non-embedding parameters and
should be the parameter count used for scaling laws research. Batch size is presented in tokens rather than
the number of contexts, following Brown et al. [2020]. For a full list of hyperparameters, see Appendix B.

2.1 Model Architecture
Although our architecture is largely similar to GPT-3, there are some notable differences. In this section
we give a high-level overview of those differences, but ask the reader to refer to Brown et al. [2020] for full
details of the model architecture.

Rotary Positional Embeddings Following on from our previous positive experiences [Biderman et al.,
2021, Biderman, 2021, Wang and Komatsuzaki, 2021], we use rotary embeddings [Su et al., 2021] instead of
the learned positional embeddings that OpenAI’s GPT models use [Radford et al., 2018]. Rotary embeddings
are a form of static relative positional embeddings. In brief, they twist the embedding space so that the
attention of a token at position m to token at position n is linearly dependent on m− n. More formally, they
modify the standard multiheaded attention equations from

softmax

(
1√
d

∑
n,m

xT
mWT

q Wkxn

)
,

where xm, xn are (batched) embeddings of tokens at position m and n respectively and WT
q , Wk are the

query and key weights respectively to

softmax

(
1√
d

∑
n,m

xT
mWT

q R
d
Θ,(n−m)Wkxn

)
,

where Rd
Θ,x is a d×d block diagonal matrix with the ith block being a 2D rotation by xθi for hyperparameters

Θ = {θi = 10000−2(i−1)/d | i ∈ {0, 1, 2, . . . , (d− 1)/2}}. For a visual diagram of what rotary embeddings do,
see Figure 1.

While Su et al. [2021] applies rotary embeddings to every embedding vector, we follow Wang and
Komatsuzaki [2021] and instead apply it only to the first 25% of embedding vectors. Our experiments indicate
that this strikes the best balance of performance and computational efficiency.2

2See the Weights & Biases reports here and here for further details.
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Figure 1: A pictorial representation of rotary embeddings, from Su et al. [2021].

Parallel Attention + FF Layers As in Wang [2021], we compute the Attention and Feed-Forward (FF)
layers in parallel3 and add the results, rather than running them in series. This is primarily for efficiency
purposes, as each residual addition with op-sharding requires one all-reduce in the forward pass and one in
the backwards pass [Shoeybi et al., 2019]. By computing the Attention and FFs in parallel, the results can be
reduced locally before performing a single all-reduce. In Mesh Transformer JAX [Wang and Komatsuzaki,
2021], this led to a 15% throughput increase, while having comparable loss curves with running them in series
during early training.

Initialization For the Feed-Forward output layers before the residuals, we used the initialization scheme
introduced in Wang [2021],

2

L
√
d

This prevents activations from growing with increasing depth and width, with the factor of 2 compensating
for the fact that the parallel and feed-forward layers are organized in parallel.

For all other layers, we use the small init scheme from Nguyen and Salazar [2019],√
2

d+ 4d

All Dense Layers While GPT-3 alternates between dense and sparse layers using the technique introduced
in Child et al. [2019], we instead opt to exclusively use dense layers to reduce implementation complexity.

2.2 Software Libraries
Our model is trained using a custom codebase that we call GPT-NeoX [Black et al., 2021a]. GPT-NeoX
builds on Megatron [Shoeybi et al., 2019] and DeepSpeed [Rasley et al., 2020] to facilitate efficient and
straightforward training of large language models with tens of billions of parameters. We use the official
PyTorch v1.10.0 release binary package compiled with CUDA 11.1. This package is bundled with NCCL
2.10.3 for distributed communications.

3See https://github.com/EleutherAI/gpt-neox/blob/ac3d8087f1762213880523893a52329d66d2d1a9/megatron/model/
transformer.py#L593 for implementation details.
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2.3 Hardware
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Figure 2: Architecture diagram of a single training node.

We trained GPT-NeoX-20B on twelve Supermicro AS-4124GO-NART servers, each with eight NVIDIA
A100-SXM4-40GB GPUs and configured with two AMD EPYC 7532 CPUs. All GPUs can directly access
the InfiniBand switched fabric through one of four ConnectX-6 HCAs for GPUDirect RDMA. Two NVIDIA
MQM8700-HS2R switches—connected by 16 links—compose the spine of this InfiniBand network, with one
link per node CPU socket connected to each switch. Figure 2 shows a simplified overview of a node as
configured for training.

3 Training
Due to the intractability of performing a hyperparameter sweep for a 20 billion parameter model, we opted
to use the values from Brown et al. [2020] to guide our choice of hyperparameters. As Brown et al. [2020] did
not train a model at our exact scale, we interpolate between the learning rates of their 13B and 175B models
to arrive at a learning rate of 0.97e−5. Based on the results of smaller scale experiments, we select a weight
decay of 0.01. To achieve a higher training throughput, we opt to use the same batch size as OpenAI’s 175B
model–approximately 3.15M tokens, or 1538 contexts of 2048 tokens each, and train for a total of 150, 000
steps, decaying the learning rate with a cosine schedule to 10% of its original value at the end of training.

We use the AdamW [Loshchilov and Hutter, 2017] optimizer, with beta values of 0.9 and 0.95 respectively,
and an epsilon of 1.0e−8. We extend AdamW with the ZeRO optimizer [Rajbhandari et al., 2019] to reduce
memory consumption by distributing optimizer states across ranks. Since the weights and optimizer states of
a model at this scale do not fit on a single GPU, we use the tensor parallelism scheme introduced in Shoeybi
et al. [2019] in combination with pipeline parallelism [Harlap et al., 2018] to distribute the model across
GPUs. To train GPT-NeoX-20B, we found the most efficient way to distribute the model given our hardware
setup to be a tensor parallel size of 2, and a pipeline parallel size of 4—allowing the most communication
intensive processes, tensor and pipeline parallelism, to occur within a node, and data parallel communication
to occur across node boundaries.

3.1 Training Data
GPT-NeoX-20B was trained on The Pile [Gao et al., 2020], a massive curated dataset that we designed
specifically for training large language models. It consists of data from 22 data sources, coarsely broken down
into 5 categories:
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• Academic Writing: Pubmed Abstracts and PubMed Central, arXiv, FreeLaw,4 USPTO Backgrounds,5
PhilPapers,6 NIH Exporter7

• Web-scrapes and Internet Resources: CommonCrawl, OpenWebText2, StackExchange,8 Wikipedia
(English)

• Prose: BookCorpus2, Bibliotik, Project Gutenberg [PG-19; Rae et al., 2019]

• Dialogue: Youtube subtitles, Ubuntu IRC,9 OpenSubtitles [Lison and Tiedemann, 2016], Hacker
News,10 EuroParl [Koehn, 2005]

• Miscellaneous: GitHub, the DeepMind Mathematics dataset [Saxton et al., 2019], Enron Emails
[Klimt and Yang, 2004]

In aggregate, the Pile consists of over 825GiB of raw text data. The diverse data sources reflects our
desire for a general-purpose language model. Certain components are up-sampled to obtain a more balanced
data distribution. In contrast, GPT-3’s training data consists of web-scrapes, books datasets, and Wikipedia.
When comparing results in this work to GPT-3, the training data is almost certainly the biggest known
unknown factor. Full details of the Pile can be found in our technical report [Gao et al., 2020] and the
associated datasheet [Biderman et al., 2022].

It is particularly notable that the Pile contains a scrape of StackExchange preprocessed into a Q/A form.
Recent work [Biderman and Raff, 2022] has shown that this formulation heavily influences code generation,
with prompts such as “write a Java program that accepts 10 integers and shows them in reversed order.”
producing not only a code solution but also a natural language discussion of that code, as one might see on
Stack Exchange.

3.2 Tokenization
For GPT-NeoX-20B, we use a BPE-based tokenizer similar to that used in GPT-2, with the same total
vocabulary size of 50257. We make three major changes to the tokenizer. First, we train a new BPE
tokenizer based on the Pile, taking advantage of its diverse text sources to construct a more general-purpose
tokenizer. Second, in contrast to the GPT-2 tokenizer which treats tokenization at the start of a string as a
non-space-delimited token, the GPT-NeoX-20B tokenizer applies consistent space delimitation regardless.
This resolves an inconsistency regarding the presence of prefix spaces to a tokenization input.11 An example
can be seen in Figure 3. Third, our tokenizer contains tokens for repeated space tokens (all positive integer
amounts of repeated spaces up to and including 24). This allows the GPT-NeoX-20B tokenizer to tokenize text
with large amounts of whitespace using fewer tokens; for instance, program source code or arXiv LATEXsource
files.

3.2.1 Tokenizer Comparisons on Pretraining Corpora

Both tokenizers share 36938 out of 50257 tokens, a ∼73.5% overlap in tokens. In this section, we perform
comparison between the GPT-NeoX-20B tokenizer to the GPT-2 tokenizer using the validation set of the Pile.

In Table 2a, we show the resulting number of tokens from tokenizing each component of the Pile’s
validation set with both tokenizers, and the ratio of GPT-NeoX-20B tokens to GPT-2 tokens.

We see that the GPT-NeoX-20B tokenizer represents all Pile components using fewer or very closely
comparable numbers of tokens. The largest percentage improvement in token counts are in the EuroParl,
GitHub, and PubMed Central components, with a more than 20% savings in the number of tokens needed
to represent that component. We highlight that arXiv, GitHub, and StackExchange—subsets with large

4https://www.courtlistener.com/
5https://bulkdata.uspto.gov/
6https://philpapers.org/
7https://exporter.nih.gov/
8https://archive.org/details/stackexchange
9https://irclogs.ubuntu.com/

10https://news.ycombinator.com/
11https://discuss.huggingface.co/t/bpe-tokenizers-and-spaces-before-words/475/2
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GPT-2

def fibRec(n):
if n < 2:

return n
else:

return fibRec(n-1) + fibRec(n-1)

55 tokens

GPT-NeoX-20B

def fibRec(n):
if n < 2:

return n
else:

return fibRec(n-1) + fibRec(n-1)

39 tokens

Figure 3: GPT-2 tokenization vs. GPT-NeoX-20B tokenization. GPT-NeoX-20B tokenization handles
whitespace better, which can be particularly useful for text such as source code. For more examples, see
Appendix C.

GPT-2 GPT-NeoX-20B GPT-NeoX-20B
GPT-2

arXiv 41,020,155 34,704,315 0.84603
BookCorpus2 2,336,388 2,365,633 1.01252
Books3 42,819,036 43,076,832 1.00602
DM Mathematics 7,699,527 7,413,775 0.96289
Enron Emails 480,500 433,867 0.90295
EuroParl 3,519,584 2,808,275 0.79790
FreeLaw 21,098,168 18,687,364 0.88573
GitHub 42,986,216 33,021,839 0.76820
Gutenberg (PG-19) 6,729,187 6,428,946 0.95538
HackerNews 2,578,933 2,551,720 0.98945
NIH ExPorter 776,688 739,558 0.95219
OpenSubtitles 5,431,529 5,446,485 1.00275
OpenWebText2 31,993,480 30,813,744 0.96313
PhilPapers 1,879,206 1,750,928 0.93174
Pile-CC 53,415,704 53,392,389 0.99956
PubMed Abstracts 8,708,180 8,215,529 0.94343
PubMed Central 56,874,247 43,534,166 0.76545
StackExchange 22,708,643 19,000,198 0.83669
USPTO Backgrounds 10,217,886 9,727,223 0.95198
Ubuntu IRC 3,341,287 2,771,066 0.82934
Wikipedia (en) 12,614,087 12,692,048 1.00618
YoutubeSubtitles 3,883,103 3,311,907 0.85290

Total 383,111,734 342,887,807 0.89501

(a) All tokens

GPT-2 GPT-NeoX-20B GPT-NeoX-20B
GPT-2

arXiv 38,932,524 33,561,364 0.86204
BookCorpus2 2,233,367 2,262,609 1.01309
Books3 40,895,236 41,198,424 1.00741
DM Mathematics 7,214,874 6,929,066 0.96039
Enron Emails 374,978 373,498 0.99605
EuroParl 3,482,120 2,780,405 0.79848
FreeLaw 17,766,692 17,434,708 0.98131
GitHub 29,338,176 27,558,966 0.93936
Gutenberg (PG-19) 5,838,580 5,827,408 0.99809
HackerNews 2,312,116 2,299,848 0.99469
NIH ExPorter 776,619 739,543 0.95226
OpenSubtitles 5,428,118 5,445,721 1.00324
OpenWebText2 30,849,218 29,723,143 0.96350
PhilPapers 1,872,347 1,743,627 0.93125
Pile-CC 51,305,080 51,281,909 0.99955
PubMed Abstracts 8,676,790 8,185,417 0.94337
PubMed Central 44,508,570 40,722,151 0.91493
StackExchange 17,414,955 16,712,814 0.95968
USPTO Backgrounds 9,882,473 9,601,385 0.97156
Ubuntu IRC 3,220,797 2,659,225 0.82564
Wikipedia (en) 11,874,878 11,986,567 1.00941
YoutubeSubtitles 3,589,042 3,046,451 0.84882

Total 337,787,550 322,074,249 0.95348

(b) Excluding whitespace tokens

Table 2: Number of tokens from tokenizing the Pile validation set. (a) shows the full token count, (b) exclude
whitespace tokens

code components—can be represented with meaningfully fewer tokens with the GPT-NeoX-20B tokenizer
compared to the GPT-2 tokenizer. Overall, the GPT-NeoX-20B tokenizer represents the Pile validation set
with approximately 10% fewer tokens compared to the GPT-2 tokenizer.

As our tokenizer is tweaked to better tokenize whitespace, we also perform a comparison between the
two tokenizers excluding whitespace. We perform the same analysis as the above, but exclude all whitespace
tokens from our computations, only counting the non-whitespace tokens. A token is considered a whitespace
token if it consists only of whitespace characters. The results are shown in Table 2b. We observe that the
GPT-NeoX-20B tokenizer still uses 5% fewer tokens to represent the Pile validation set compared to the
GPT-2 tokenizer. As expected, the token ratios for certain components such as GitHub and StackExchange
become closer to even once the whitespace characters are excluded.

GPT-2 GPT-NeoX-20B GPT-NeoX-20B
GPT-2

C4 Tokens 173,669,294 173,768,876 1.00057
C4 Tokens excl. Space 168,932,391 171,003,008 1.01226

Table 3: Number of tokens from tokenizing the AllenAI C4 (en) validation set.

Given that the GPT-NeoX-20B is trained on the Pile, the Pile components would be considered in-domain
for the tokenizer, and hence it may not provide the most informative comparison between the two. To perform
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an out-of-domain comparison, we perform the same analysis using the AllenAI replication of C4,12, another
popular pretraining corpus for large language models. As above, we use the validation set for our analysis.
Our results are shown in Table 3. We find that the GPT-NeoX-20B tokenizer tokenizes the C4 validation set
to approximately the same number of tokens as the GPT-2 tokenizer. When excluding all whitespace tokens,
the GPT-NeoX-20B requires approximately 1% more tokens to represent the corpus compared to the GPT-2
tokenizer.

3.2.2 Longest Tokens

We show in Table 4 the 10 longest tokens in each tokenizer vocabulary. We exclude consideration of tokens
that comprise only symbols or whitespace characters. We observe that for the GPT-2 tokenizer, many of
the longest tokens appear to reflect artifacts in the tokenizer training data, likely with certain websites or
web-scrapes being overrepresented in the training data. For the GPT-NeoX-20B tokenizer, we observe that
most of the longest tokens are scientific terms, likely arising from the PubMed components of the Pile.

GPT-2 GPT-NeoX-20B

rawdownloadcloneembedreportprint Ġimmunohistochemistry
BuyableInstoreAndOnline Ġimmunohistochemical
cloneembedreportprint Ġtelecommunications
ĠRandomRedditorWithNo Ġimmunofluorescence
Ġtelecommunications Ġimmunosuppressive
channelAvailability ĠBytePtrFromString
Ġdisproportionately Ġmultidisciplinary
ĠTelecommunications Ġhistopathological
ĠguiActiveUnfocused Ġneurodegenerative
ItemThumbnailImage Ġindistinguishable

Table 4: Ten longest tokens (excluding tokens comprising mainly symbols, numbers and spaces) in tokenizer
vocabularies. “Ġ” indicates a word delimiter.

3.2.3 Worst Case Word Tokenization Comparison

GPT-2 Worst-case Tokenization
Word GPT-2 Tokenization GPT-NeoX-20B Tokenization

hematopoietic (6) hematopoietic (1) hematopoietic
adenocarcinoma (6) adenocarcinoma (1) adenocarcinoma
MERCHANTABILITY (5) MERCHANTABILITY (1) MERCHANTABILITY
CONSEQUENTIAL (5) CONSEQUENTIAL (1) CONSEQUENTIAL
oligonucleotides (5) oligonucleotides (1) oligonucleotides
cytoplasmic (5) cytoplasmic (1) cytoplasmic
corticosteroids (4) corticosteroids (1) corticosteroids
neurodegenerative (4) neurodegenerative (1) neurodegenerative
asymptotic (4) asymptotic (1) asymptotic
aneurysm (4) aneurysm (1) aneurysm

GPT-NeoX-20B Worst-case Tokenization
Word GPT-2 Tokenization GPT-NeoX-20B Tokenization

Schwarzenegger (1) Schwarzenegger (5) Schwarzenegger
Bolshevik (1) Bolshevik (4) Bolshevik
crowdfunding (1) crowdfunding (4) crowdfunding
misogyny (1) misogyny (4) misogyny
McAuliffe (1) McAuliffe (4) McAuliffe
unstoppable (1) unstoppable (4) unstoppable
Timberwolves (1) Timberwolves (4) Timberwolves
excruciating (1) excruciating (4) excruciating
Kaepernick (1) Kaepernick (4) Kaepernick
Valkyrie (1) Valkyrie (4) Valkyrie

Table 5: Worst case word tokenization with respective tokenizers. We show cases where one tokenizer requires
many more tokens to represent a word compared to the other tokenizer.

We consider the words for which there is the greatest discrepancy in the resulting token length between the
two tokenizers, where one tokenizer needs many tokens to represent while the other tokenizer uses relatively
few tokens. We define a word as a contiguous string delimited by whitespace or punctuation (as defined
by strings.punctuation in Python). We perform this analysis at the component level. We only consider
words that occur at least 10 times within the given component. We show in Table 5 a representative example
from the Pile-CC corpus.

12https://github.com/allenai/allennlp/discussions/5056
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4 Performance Evaluations
To evaluate our model we use Gao et al. [2021b], an open source codebase for language model evaluation that
supports a number of model APIs. We compare with the GPT-3 API [Brown et al., 2020] 13, the open source
FairSeq dense models [Artetxe et al., 2021], and GPT-J [Wang and Komatsuzaki, 2021]. We do not compare
against T5 [Raffel et al., 2019] as our evaluation methodology assumes the models are autoregressive, or T0
[Sanh et al., 2021] because the T0 API does not allow for computing log-likelihoods.

While it is common to display “scaling laws” curves of best fit, we opt to not do so as the small number of
OpenAI API models give DaVinci an outsized influence on the slope of the curve. Instead, we connect the
points with lines directly. A dashed line between GPT-J and GPT-NeoX-20B acknowledges the fact that,
while the models are very similar, they are not the same model trained at two different scales the way the
FairSeq and OpenAI models are.

When we were able to obtain the relevant information, we report two baselines: human level performance
and random performance. All plots contain error bars representing two standard errors, meaning that each
interval is a 95% confidence interval around the point. For some plots, the standard error is so small that the
interval is not visible.

4.1 Natural Language Tasks
We evaluate our model on a diverse collection of standard language modeling datasets. In general, we find
that GPT-NeoX-20B performs on par with or marginally worse than FairSeq 13B and approximately on the
linear interpolation between the performance of OpenAI’s Curie and DaVinci models.

4.2 Knowledge-Based Tasks
In addition to evaluating on natural language processing benchmarks, we are also interested in the ability
of our models to answer factual questions requiring advanced knowledge. To do this, we use a dataset of
multiple choice questions in a variety of diverse domains developed by Hendrycks et al. [2020]. As individual
subjects are rather noisy, we follow [Hendrycks et al., 2020] by focusing on results aggregated by subject area:
Humanities, Social Sciences, STEM, and Miscellaneous as presented in Figure 5. We report full results in the
appendix.

4.3 Mathematical Competency
Due to the fact that large language models tend to perform quite poorly on both arithmetic tasks and
mathematical problems, we opted to include mathematical texts in various forms (arXiv, DM Mathematics,
Math Stack Exchange and Math Overflow) as a significant portion of our training data in an attempt to
improve performance in these areas.

We evaluate on the MATH test dataset [Hendrycks et al., 2021]. Note that this is an evaluation metric
that is generally finetuned on, but due to computational limitations we only evaluate models zero-shot here.

We also find that GPT-J, also trained on the Pile, matches GPT-3 175B’s performance despite being 30x
smaller. While we leave finetuning GPT-J and GPT-NeoX to future work, we view this as a strong indicator
that pretraining on the Pile is an effective way to improve performance on mathematics tasks.

5 Discussion
Whilst the performance of the released 20B parameter model is impressive in many respects, outperforming
our previous best performing model, GPT-J-6B, on most benchmarked datasets, it is clear from comparing
to Fairseq’s 13B parameter model [Artetxe et al., 2021], and extrapolating based on OpenAI’s models’
performance, that the performance on natural language tasks in particular could be improved, whilst the
performance in other areas, such as scientific literature and mathematics excels. In this section we will try to

13The numbers do not always agree with the numbers reported in Brown et al. [2020], because our prompt formatting is
slightly different from theirs.
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Figure 4: Zero-shot performance of GPT-NeoX-20B compared to GPT-J-6B and FairSeq and OpenAI models
on a variety of language modeling benchmarks. Length-Normalized plots can be seen in Figure 13
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Figure 5: Zero-shot performance of GPT-NeoX-20B compared to GPT-J-6B and FairSeq and OpenAI models
on Hendrycks et al. [2020]. We were unable to find information on median human performance.

Figure 6: Zero-shot performance of GPT-NeoX-20B, GPT-J-6B, and GPT-Neo 2.7B compared to FairSeq
and OpenAI models on the MATH dataset. Random performance on this task is 0%, and we were unable to
find information on median human performance.
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dissect what the causes for these performance differences could be, and how we might be able to address
them in future iterations.

Tokenizer and Dataset. We expect some performance regression on web- and book-based language
modeling benchmarks due to our tokenizer design favoring scientific and programming documents [Section 3.2]
over web documents, as well as the former being much more prevalent in the Pile when compared to OpenAI’s
training set. However, we did not have the resources to quantify the expected performance differences from
these design choices, and leave this to future work.

Hyperparameter Tuning. Hyperparameter tuning is an expensive process, which for multi-billion
parameter networks is often infeasible to do at full scale. Due to the aforementioned limitations, we opted to
choose hyperparameters based on a mixture of experiments at smaller scales and by interpolating parameters
appropriate for our model size based on previously published work [Brown et al., 2020]. However, several
aspects of both our model architecture [Section 2.1] and our training setup, including the data [Section 3.1]
and the tokenizer [Section 3.2], diverge significantly from Brown et al. [2020]. As such, it is almost certainly
the case that the hyperparameters used for those models are no longer optimal, and potentially never were.

The effects of certain hyperparameter choices on language models are sadly understudied, to the extent
that many aspects of training large transformer models are effectively a folk art, only accessible to staff at a
select number of private companies. For example, literature rigorously studying the effect of weight decay in
language models is particularly scant [Zhou et al., 2021], [Zhang et al., 2018], and likewise, there is very little
research investigating the effects of choices in designing a tokenizer—in particular the choice of vocabulary
size—on downstream performance.

It is possible that our choice of 0.01 for weight decay was sub-optimal compared to GPT-3’s choice of 0.1,
however, we note that Fairseq’s recently released LMs [Artetxe et al., 2021] also used a weight decay of 0.01.
Another possible source of performance regression could have been our choice of batch size. For efficiency
reasons, we opted to use a fairly large batch size of 3.2M tokens during training, the same as was used by the
175B GPT-3 model. The critical batch size [McCandlish et al., 2018] for the model may have been lower,
possibly resulting in a negative impact on training. In addition, the optimal learning rate—which we selected
by interpolating between the learning rates for models in [Brown et al., 2020]—can often be affected by
the batch size, and failing to quantify this effect accurately could also have led to suboptimal performance.
During the training of the model, however, new research has been released which may significantly alleviate
the costs of hyperparameter tuning for future training runs [Yang et al., 2021].

Dataset Deduplication. Finally, the lack of dataset deduplication could also have had an impact on
downstream performance. Recent research has shown that deduplicating training data can have a large effect
on perplexity scores [Lee et al., 2021]. Although GPT-J-6B was trained on the same data and performed
on par with OpenAI’s models of a similar size, it seems plausible that this effect could become particularly
apparent with a larger model size.

6 Broader Impacts
We believe that Transformative Artificial Intelligence (TAI) [Karnofsky et al., 2016] is approaching [Cotra,
2020, Grace et al., 2018], and that these systems will cause catastrophic damage if they are misaligned with
human values [Fox and Shulman, 2013, Omohundro, 2008]. As such, we believe it is essential to prioritize and
help facilitate technical research that ensures TAI’s values will be aligned with ours.

AI Alignment generally refers to the problem of how to ensure increasingly powerful and autonomous AI
systems perform the users’ wishes faithfully and without unintended consequences. Alignment is especially
critical as we approach human and superhuman levels of intelligence, as powerful optimization processes amplify
small errors in goal specification into large misalignments [Goodhart, 1984, Manheim and Garrabrant, 2019,
Fox and Shulman, 2013], and misalignments in this regime will result in runaway optimization processes that
evade alteration or shutdown [Omohundro, 2008, Benson-Tilsen and Soares, 2016, Turner et al., 2021], posing
a significant existential risk to humanity. Additionally, even if the goal is specified correctly, superhuman
models may still develop deceptive subsystems that attempt to influence the real world to satisfy their
objectives [Hubinger et al., 2021]. While current systems are not yet at the level where the consequences of
misalignment pose an existential threat, rapid progress in the field of AI has increased the concern that the
alignment problem may be seriously tested in the not-too-distant future.
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Much of the alignment literature focuses on the more theoretical aspects of alignment [Demski and
Garrabrant, 2020, Yudkowsky and Soares, 2018, Taylor, 2016, Garrabrant et al., 2016, Armstrong and Min-
dermann, 2018, Hubinger et al., 2021], abstracting away the specifics of how intelligence will be implemented,
due to uncertainty over the path to TAI. However, with the recent advances in capabilities, it may no longer
be the case that the path to TAI is completely unpredictable. In particular, recent increases in the capabilities
of large language models (LLMs) raises the possibility that the first generation of transformatively powerful
AI systems may be based on similar principles and architectures as current large language models like GPT.
This has motivated a number of research groups to work on “prosaic alignment” [Christiano, 2016, Askell
et al., 2021, Ouyang et al., 2021], a field of study that considers the AI alignment problem in the case of
TAI being built primarily with techniques already used in modern ML. We believe that due to the speed of
AI progress, there is a significant chance that this assumption is true, and, therefore, that contributing and
enabling contributions to prosaic alignment research will have a large impact.

The open-source release of this model is motivated by the hope that it will allow alignment researchers
who would not otherwise have access to LLMs to use them. While there are negative risks due to the potential
acceleration of capabilities research, which may place further time pressure on solving the alignment problem,
we believe the benefits of this release outweigh the risks of accelerating capabilities research.

6.1 The Usefulness of Large Language Models in Alignment
LLMs represent a different paradigm than the AI systems generally studied by alignment researchers because
they are not well-described as coherent agents or expected utility maximizers. Though trained to optimize a
log-likelihood loss function, at a high level the goals a LLM pursues are varied and contradictory, depending
on the way it is prompted. This introduces additional challenges, but may also enable new approaches to
alignment.

GPT-NeoX-20B itself is not the system we need to align, but we hope it can serve as a publicly available
platform for experiments whose results might generalize to crucial future work.

The following is a non-exhaustive list of potential approaches we consider promising for further investigation.

Mechanistic interpretability. Mechanistic interpretability research [Cammarata et al., 2020] hopes to
gain an understanding into how models accomplish the tasks they do, in part in the hopes of detecting
problematic or deceptive algorithms implemented by models before these failures manifest in the real world.
Being able to interpret and inspect the detailed inner workings of trained models would be a powerful tool to
ensure models are optimizing for the goals we intended [Hubinger et al., 2021, Koch et al., 2021]. Reverse
engineering transformer language models has already yielded insights about the inner functioning of LMs
[Elhage et al., 2021, nostalgebraist, 2020, Anonymous, 2022, Dai et al., 2021].

Using a LLM as a reward model. Because they are trained to predict human writing, LLMs also appear
to develop a useful representation of human values at the semantic level. Finding a way to utilise these
representations could be a possible path toward solving the problem of reward robustness in RL and other
algorithms which require a proxy of human judgment [Stiennon et al., 2020, Wentworth, 2020]. Despite
fundamental theoretical limitations on learning human values [Armstrong and Mindermann, 2018, Kosoy,
2021], value learning may still be robust enough to align weaker superhuman AIs. Future experiments
could explore the extent to which LLM pretraining improves downstream reward model robustness and
generalization.

Natural language transparency. Since LLM prompts are in a human-readable form, it can provide
insight on the LLM’s expected behavior. Prompt programming or finetuning can be used to leverage this
fact and force a LLM to execute more transparent algorithms, such as splitting problems into steps or
explicitly writing an “internal monologue” [Soares, 2021, Gao et al., 2021a, Nye et al., 2021]. Reliability and
trustworthiness can present significant challenges for these approaches.

However, this form of transparency also has its limits. In particular, models can often respond unpredictably
to prompts, and internal monologues may become completely detached from the model’s decision making
process if translating between the model’s ontology and the human ontology is more complex than simply
modeling human monologues [Christiano et al., 2021].
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Simulating agents at runtime. Although LLMs are not well-described as coherent agents, they can still be
used to generate goal-directed processes. Given an appropriate prompt (such as a story of a character working
to achieve a goal), LLMs can predict and thus simulate an agent [Huang et al., 2022]. Simulated agents take
representative actions according to the patterns present in the training data, similar to behavior cloning. One
potential future research direction is testing whether they are less susceptible to failure modes that follow
from expected utility maximization, such as Goodhart failures and power-seeking behavior. However, other
failure modes can be introduced by the LM training procedure, such as “delusions” or “hallucinations” [Ortega
et al., 2021, Gao, 2021, Maynez et al., 2020]. Additionally, simulated agents may be uncompetitive with
optimal agents like those produced by Reinforcement Learning. An important research direction is to explore
how the beneficial properties of simulated agents can be maintained while making them competitive with RL
based approaches.

Tool AI and automated alignment research. LMs can be used as relatively unagentic tools, such as
OpenAI’s Codex model [Chen et al., 2021] acting as a coding assistant. Because pretrained LLMs are not
directly optimized for the factual accuracy of their predictions, it is possible they avoid some of the traditional
problems with tool or oracle AI [Armstrong et al., 2012], such as the incentive to produce manipulative
answers [Demski, 2019]. Tool AI is not a long-term solution to the problem of alignment, but it could be used
to assist alignment research or even automate large parts of it. For example, language models could be used
to help brainstorm alignment ideas more quickly, act as a writing assistant, or directly generate alignment
research papers for humans to review. This line of research also risks accelerating capabilities research, a
concern we discuss more below.

6.2 Lack of Access
Despite the importance of prosaic alignment research, lack of access to large models presents a barrier to
the types of research that can be explored by the wider research community. Having access to large models
as close to the cutting edge as possible is essential for many research questions. Though some research can
extrapolate from smaller models using scaling laws [Kaplan et al., 2020], some capabilities emerge only as
models scale, and performance on tasks can increase discontinuously [Brown et al., 2020]. Simply put, there
are many properties of TAI you cannot study with models which can barely form coherent sentences.

Because training large models requires a significant engineering and capital investment, such models are
often out of reach for small labs and independent researchers. As it stands, only large organizations have
access to the latest generation of powerful language models [Brown et al., 2020, Rae et al., 2021, Fedus et al.,
2021, Lieber et al., 2021, Tang, 2021, Artetxe et al., 2021]. The number of researchers focused primarily on
alignment working at these labs is much lower than those working on capabilities.

At current model capability levels, close-sourced models are primarily a limitation on the public’s ability
to probe and modify large models. Though some types of prosaic alignment research can be done using
only inference through an API, many require direct access to network weights. For example, interpretability
research relies heavily on the ability to inspect and modify weights and activations, and many approaches to
control and robustness require additional training.

If only a small number of organizations and individuals have knowledge, access, and opportunity to work
on pressing prosaic alignment problems, we are much more likely to fail. By openly training and releasing
our large models, we hope to make it possible for more researchers to contribute to prosaic alignment. There
are already a number of researchers using our previous models for alignment research [nostalgebraist, 2020,
Anonymous, 2022, Lin et al., 2021], and there are multiple RFPs requesting more [Bergal and Beckstead,
2021, Barnes, 2021].

6.3 Impact on Capabilities Research
Alignment is, in a sense, “philosophy with a deadline” [Bostrom, 2014]. Given the rapid progress of AI
Capabilities, it seems likely that we have limited time to solve the alignment problem before existentially
dangerous AI systems are developed. As it stands, alignment research lags far behind capabilities research
and does not seem likely to catch up if the current rates of progress continue [Wiblin, 2017, Yudkowsky and
Ngo, 2021, Amodei and Hernandez, 2018].
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Given that it seems infeasible to halt all AI capabilities research, we reason that focusing on work that
advances the field of alignment more than it advances AI capabilities should provide a net reduction to
existential risk. We feel the risk of releasing GPT-NeoX-20B is acceptable, as the contribution of the model
to capabilities research is likely to be limited, for two reasons. Firstly, the organizations pursuing capabilities
research most aggressively are unlikely to benefit from our open-source release of this model because it
significantly trails the state of the art. Second, we believe the single most impactful piece of knowledge
that LLM research has had on advancing capabilities is the knowledge that scaling LMs was possible in the
first place [Leahy, 2020, Leahy and Biderman, 2021], whereas the actual implementation is very fungible (as
evidenced by the large number of parties who have succeeded in creating their own LLMs).

We ultimately believe that the benefits of releasing this model outweigh the risks, but this argument
hinges crucially on the particular circumstances of this release. All actors considering releasing powerful AI
models or advancing the frontier of capabilities should think carefully about what they release, in what way,
and when.

6.4 Environmental Impact
A significant point of concern in some recent work is the energy usage and carbon emissions associated with
training large language models [Strubell et al., 2019, Schwartz et al., 2020, Lacoste et al., 2019, Bender et al.,
2021]. In particular, Strubell et al. [2019] estimate that a then-recent paper by the authors released 626, 155
lbs or 284.01 metric tons14 of CO2 (tCO2

). As Strubell et al. [2019] has been widely cited and quoted in the
media as representative of large-scale language models, we decided to explicitly and carefully track our energy
usage and carbon emissions to see if this is truly a representative account of NLP emissions.

Throughout the development and training of our model, we tracked our energy usage and carbon emissions
with the assistance of CoreWeave. We found that the process of developing and training GPT-NeoX-20B
emitted almost exactly 10% of Strubell et al. [2019]’s estimate, coming in at a total of 69957 lbs or 31.73
metric tons of CO2. This is roughly the equivalent of the yearly emissions of the average American or 35
round-trip flights between New York City and San Francisco. Our systems were based in Illinois, USA, and
consumed energy sourced from the mix described in Table 6

It is noteworthy that Strubell et al. [2019] are estimating emissions from a neural architecture search
paper, and is therefore not directly comparable to ours. The primary motivation for our comparison is that
their number has attracted a lot of attention and is often taken to be respresentative of NLP research. In
general, we advocate for more systematic and comprehensive reporting to improve transparency surrounding
this important topic.

Coal Gas Hydro Nuclear Solar Wind Other
% Electricity Mix 30.40% 31.30% 1.30% 17.40% 0.30% 18.10% 1.30%

tCO2
/MWh 0.95 0.6078 0 0 0 0 0

Table 6: Caption

This mixture produces an average of 0.47905 tCO2
/MWh, and we consumed a total of 43.92MWh of

electricity over the course of 1830 hours of training. Scaling, testing, and evaluation were responsible for the
equivalent of another 920 hours on our systems, for a total energy consumption 66.24MWh and thus the
production of just under 35 metric tons of CO2.

7 Summary
We released GPT-NeoX-20B, a 20 billion parameter autoregressive transformer language model trained on
the Pile [Gao et al., 2020] dataset, and detailed the main architectural differences between GPT-NeoX-
20B and GPT-3—most notably the change in tokenizer, the addition of Rotary embeddings, the parallel
computation of attention and feed-forward layers, and a different initialization scheme and hyperparameters.
We ran extensive evaluations of GPT-NeoX-20B on natural language and factual knowledge tasks, and

14We choose to present environmental impact figures in metric ton to align with standard reporting.
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compared it with other publicly available models, finding it performed particularly well on knowledge-
based and mathematical tasks. Finally, we are open sourcing the training and evaluation code at https:
//github.com/EleutherAI/gpt-neox, where you can also find a link to download the model weights across
the whole training run.
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B Full Configuration Details
In Table 7 we attach the full configuration details used to train GPT-NeoX-20B. The file is available in
.yaml format usable in gpt-neox at https://github.com/EleutherAI/gpt-neox, where you can also access
documentation describing the role of each parameter.

C Tokenization Examples
In Figures 7 - 12, we show examples of tokenized documents from the Pile, comparing the GPT-2 tokenizer
to ours.
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Configuration Key Value
attention-dropout 0
bias-gelu-fusion True
checkpoint-activations True
checkpoint-num-layers 1
data-impl mmap
distributed-backend nccl
eval-interval 1000
eval-iters 10
fp16.enabled True
fp16.fp16 True
fp16.hysteresis 2
fp16.initial-scale-power 12
fp16.loss-scale 0
fp16.loss-scale-window 1000
fp16.min-loss-scale 1
gpt-j-residual True
gradient-accumulation-steps 32
gradient-clipping 1.0
hidden-dropout 0
hidden-size 6144
init-method small-init
log-interval 2
lr-decay-iters 150000
lr-decay-style cosine
max-position-embeddings 2048
min-lr 9.7e-06
model-parallel-size 2
no-weight-tying True
norm layernorm
num-attention-heads 64
num-layers 44

Configuration Key Value
optimizer.params.betas [0.9, 0.95]
optimizer.params.eps 1e-08
optimizer.params.lr 9.7e-05
optimizer.type Adam
output-layer-init-method wang-init
output-layer-parallelism column
partition-activations False
pipe-parallel-size 4
pos-emb rotary
rotary-pct 0.25
save-interval 500
scaled-upper-triang-masked-softmax-fusion True
seq-length 2048
split 995,4,1
steps-per-print 2
synchronize-each-layer True
tokenizer-type HFTokenizer
train-iters 150000
train-micro-batch-size-per-gpu 4
vocab-file 20B-tokenizer.json
wall-clock-breakdown False
warmup 0.01
weight-decay 0.01
zero-optimization.allgather-bucket-size 1260000000
zero-optimization.allgather-partitions True
zero-optimization.contiguous-gradients True
zero-optimization.cpu-offload False
zero-optimization.overlap-comm True
zero-optimization.reduce-bucket-size 1260000000
zero-optimization.reduce-scatter True
zero-optimization.stage 1

Table 7: The full configuration details for GPT-NeoX-20B training

D Evaluation Tables
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Figure 7: Pile (ArXiv) Tokenization Example

Figure 8: Pile (BookCorpus2) Tokenization Example
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Figure 9: Pile (DM Mathematics) Tokenization Example

Figure 10: Pile (Github) Tokenization Example
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Figure 11: Pile (OpenWebText2) Tokenization Example

Figure 12: Pile (PubMed Abstracts) Tokenization Example
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Figure 13: Length-normalized zero-shot performance of GPT-NeoX-20B compared to GPT-J-6B and FairSeq
and OpenAI models on a variety of language modeling benchmarks.
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EleutherAI OpenAI
Task 6B 20B Ada Babbage Curie DaVinci
anli r1 0.324± 0.015 0.340± 0.015 0.334± 0.015 0.326± 0.015 0.325± 0.015 0.363± 0.015
anli r2 0.340± 0.015 0.343± 0.015 0.342± 0.015 0.308± 0.015 0.338± 0.015 0.375± 0.015
anli r3 0.355± 0.014 0.354± 0.014 0.354± 0.014 0.340± 0.014 0.353± 0.014 0.369± 0.014
arc challenge — 0.380± 0.014 0.225± 0.012 0.275± 0.013 0.334± 0.014 0.435± 0.014
arc easy — 0.723± 0.009 0.514± 0.010 0.598± 0.010 0.682± 0.010 0.762± 0.009
hellaswag — 0.535± 0.005 0.359± 0.005 0.429± 0.005 0.505± 0.005 0.592± 0.005
Hendrycks abstract algebra 0.260± 0.044 0.230± 0.042 0.170± 0.038 0.220± 0.042 0.220± 0.042 0.220± 0.042
Hendrycks anatomy 0.274± 0.039 0.319± 0.040 0.207± 0.035 0.289± 0.039 0.274± 0.039 0.348± 0.041
Hendrycks astronomy 0.243± 0.035 0.329± 0.038 0.237± 0.035 0.211± 0.033 0.237± 0.035 0.382± 0.040
Hendrycks business ethics 0.290± 0.046 0.280± 0.045 0.360± 0.048 0.330± 0.047 0.300± 0.046 0.390± 0.049
Hendrycks clinical knowledge 0.272± 0.027 0.291± 0.028 0.223± 0.026 0.234± 0.026 0.253± 0.027 0.317± 0.029
Hendrycks college biology 0.285± 0.038 0.271± 0.037 0.271± 0.037 0.299± 0.038 0.208± 0.034 0.347± 0.040
Hendrycks college chemistry 0.240± 0.043 0.160± 0.037 0.270± 0.045 0.290± 0.046 0.210± 0.041 0.250± 0.044
Hendrycks college computer science 0.270± 0.045 0.250± 0.044 0.310± 0.046 0.270± 0.045 0.240± 0.043 0.260± 0.044
Hendrycks college mathematics 0.260± 0.044 0.240± 0.043 0.220± 0.042 0.160± 0.037 0.200± 0.040 0.170± 0.038
Hendrycks college medicine 0.197± 0.030 0.283± 0.034 0.237± 0.032 0.202± 0.031 0.225± 0.032 0.289± 0.035
Hendrycks college physics 0.206± 0.040 0.284± 0.045 0.304± 0.046 0.324± 0.047 0.255± 0.043 0.235± 0.042
Hendrycks computer security 0.270± 0.045 0.290± 0.046 0.250± 0.044 0.240± 0.043 0.320± 0.047 0.350± 0.048
Hendrycks conceptual physics 0.255± 0.029 0.294± 0.030 0.264± 0.029 0.260± 0.029 0.268± 0.029 0.294± 0.030
Hendrycks econometrics 0.237± 0.040 0.289± 0.043 0.289± 0.043 0.246± 0.040 0.246± 0.040 0.228± 0.039
Hendrycks electrical engineering 0.359± 0.040 0.303± 0.038 0.338± 0.039 0.276± 0.037 0.310± 0.039 0.414± 0.041
Hendrycks elementary mathematics 0.254± 0.022 0.283± 0.023 0.243± 0.022 0.272± 0.023 0.249± 0.022 0.312± 0.024
Hendrycks formal logic 0.341± 0.042 0.294± 0.041 0.262± 0.039 0.349± 0.043 0.270± 0.040 0.294± 0.041
Hendrycks global facts 0.250± 0.044 0.220± 0.042 0.240± 0.043 0.240± 0.043 0.300± 0.046 0.290± 0.046
Hendrycks high school biology 0.252± 0.025 0.300± 0.026 0.235± 0.024 0.232± 0.024 0.271± 0.025 0.335± 0.027
Hendrycks high school chemistry 0.202± 0.028 0.236± 0.030 0.246± 0.030 0.241± 0.030 0.197± 0.028 0.232± 0.030
Hendrycks high school computer science 0.250± 0.044 0.210± 0.041 0.190± 0.039 0.240± 0.043 0.220± 0.042 0.290± 0.046
Hendrycks high school european history 0.261± 0.034 0.255± 0.034 0.224± 0.033 0.285± 0.035 0.261± 0.034 0.303± 0.036
Hendrycks high school geography 0.202± 0.029 0.227± 0.030 0.217± 0.029 0.207± 0.029 0.242± 0.031 0.348± 0.034
Hendrycks high school government and politics 0.228± 0.030 0.228± 0.030 0.212± 0.030 0.181± 0.028 0.212± 0.030 0.326± 0.034
Hendrycks high school macroeconomics 0.285± 0.023 0.328± 0.024 0.272± 0.023 0.277± 0.023 0.277± 0.023 0.303± 0.023
Hendrycks high school mathematics 0.219± 0.025 0.263± 0.027 0.196± 0.024 0.230± 0.026 0.167± 0.023 0.248± 0.026
Hendrycks high school microeconomics 0.277± 0.029 0.294± 0.030 0.235± 0.028 0.265± 0.029 0.239± 0.028 0.307± 0.030
Hendrycks high school physics 0.272± 0.036 0.298± 0.037 0.199± 0.033 0.298± 0.037 0.199± 0.033 0.219± 0.034
Hendrycks high school psychology 0.273± 0.019 0.283± 0.019 0.209± 0.017 0.217± 0.018 0.246± 0.018 0.352± 0.020
Hendrycks high school statistics 0.292± 0.031 0.319± 0.032 0.241± 0.029 0.278± 0.031 0.255± 0.030 0.278± 0.031
Hendrycks high school us history 0.289± 0.032 0.309± 0.032 0.255± 0.031 0.260± 0.031 0.240± 0.030 0.368± 0.034
Hendrycks high school world history 0.283± 0.029 0.295± 0.030 0.278± 0.029 0.262± 0.029 0.270± 0.029 0.321± 0.030
Hendrycks human aging 0.265± 0.030 0.224± 0.028 0.368± 0.032 0.336± 0.032 0.296± 0.031 0.327± 0.031
Hendrycks human sexuality 0.397± 0.043 0.405± 0.043 0.374± 0.042 0.427± 0.043 0.397± 0.043 0.481± 0.044
Hendrycks international law 0.264± 0.040 0.298± 0.042 0.182± 0.035 0.207± 0.037 0.207± 0.037 0.331± 0.043
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Task 6B 20B Ada Babbage Curie DaVinci
Hendrycks jurisprudence 0.278± 0.043 0.250± 0.042 0.287± 0.044 0.278± 0.043 0.259± 0.042 0.370± 0.047
Hendrycks logical fallacies 0.294± 0.036 0.227± 0.033 0.239± 0.034 0.221± 0.033 0.245± 0.034 0.252± 0.034
Hendrycks machine learning 0.223± 0.040 0.268± 0.042 0.241± 0.041 0.286± 0.043 0.295± 0.043 0.232± 0.040
Hendrycks management 0.233± 0.042 0.282± 0.045 0.184± 0.038 0.214± 0.041 0.320± 0.046 0.456± 0.049
Hendrycks marketing 0.303± 0.030 0.321± 0.031 0.308± 0.030 0.282± 0.029 0.308± 0.030 0.491± 0.033
Hendrycks medical genetics 0.310± 0.046 0.340± 0.048 0.260± 0.044 0.300± 0.046 0.330± 0.047 0.430± 0.050
Hendrycks miscellaneous 0.275± 0.016 0.299± 0.016 0.257± 0.016 0.269± 0.016 0.284± 0.016 0.450± 0.018
Hendrycks moral disputes 0.283± 0.024 0.289± 0.024 0.263± 0.024 0.263± 0.024 0.277± 0.024 0.301± 0.025
Hendrycks moral scenarios 0.237± 0.014 0.232± 0.014 0.238± 0.014 0.273± 0.015 0.238± 0.014 0.249± 0.014
Hendrycks nutrition 0.346± 0.027 0.379± 0.028 0.301± 0.026 0.281± 0.026 0.291± 0.026 0.353± 0.027
Hendrycks philosophy 0.260± 0.025 0.293± 0.026 0.215± 0.023 0.267± 0.025 0.244± 0.024 0.367± 0.027
Hendrycks prehistory 0.244± 0.024 0.272± 0.025 0.244± 0.024 0.269± 0.025 0.284± 0.025 0.324± 0.026
Hendrycks professional accounting 0.262± 0.026 0.234± 0.025 0.202± 0.024 0.255± 0.026 0.238± 0.025 0.287± 0.027
Hendrycks professional law — 0.267± 0.011 0.261± 0.011 0.256± 0.011 0.259± 0.011 0.261± 0.011
Hendrycks professional medicine 0.276± 0.027 0.287± 0.027 0.221± 0.025 0.239± 0.026 0.265± 0.027 0.324± 0.028
Hendrycks professional psychology 0.284± 0.018 0.275± 0.018 0.245± 0.017 0.225± 0.017 0.257± 0.018 0.335± 0.019
Hendrycks public relations 0.282± 0.043 0.345± 0.046 0.255± 0.042 0.327± 0.045 0.364± 0.046 0.364± 0.046
Hendrycks security studies 0.363± 0.031 0.376± 0.031 0.367± 0.031 0.347± 0.030 0.384± 0.031 0.392± 0.031
Hendrycks sociology 0.279± 0.032 0.284± 0.032 0.328± 0.033 0.303± 0.033 0.274± 0.032 0.368± 0.034
Hendrycks us foreign policy 0.340± 0.048 0.360± 0.048 0.330± 0.047 0.330± 0.047 0.380± 0.049 0.500± 0.050
Hendrycks virology 0.355± 0.037 0.361± 0.037 0.307± 0.036 0.319± 0.036 0.337± 0.037 0.386± 0.038
Hendrycks world religions 0.333± 0.036 0.386± 0.037 0.316± 0.036 0.310± 0.035 0.374± 0.037 0.398± 0.038
lambada 0.683± 0.006 0.720± 0.006 0.515± 0.007 0.625± 0.007 0.693± 0.006 0.752± 0.006
logiqa — 0.230± 0.017 0.218± 0.016 0.198± 0.016 0.217± 0.016 0.227± 0.016
Math algebra 0.013± 0.003 0.010± 0.003 0.003± 0.002 0.008± 0.003 0.003± 0.002 0.008± 0.003
Math counting and prob 0.011± 0.005 0.017± 0.006 0.000± 0.000 0.004± 0.003 0.000± 0.000 0.006± 0.004
Math geometry 0.004± 0.003 0.017± 0.006 0.000± 0.000 0.000± 0.000 0.002± 0.002 0.002± 0.002
Math intermediate algebra 0.004± 0.002 0.001± 0.001 0.000± 0.000 0.003± 0.002 0.006± 0.002 0.003± 0.002
Math num theory 0.007± 0.004 0.013± 0.005 0.007± 0.004 0.000± 0.000 0.006± 0.003 0.011± 0.005
Math prealgebra 0.010± 0.003 0.018± 0.005 0.007± 0.003 0.006± 0.003 0.008± 0.003 0.014± 0.004
Math precalc 0.005± 0.003 0.005± 0.003 0.004± 0.003 0.000± 0.000 0.002± 0.002 0.004± 0.003
openbookqa — 0.290± 0.020 0.172± 0.017 0.224± 0.019 0.290± 0.020 0.336± 0.021
piqa — 0.779± 0.010 0.690± 0.011 0.745± 0.010 0.767± 0.010 0.791± 0.009
prost — 0.296± 0.003 0.254± 0.003 0.270± 0.003 0.288± 0.003 0.267± 0.003
qa4mre 2013 — 0.363± 0.029 0.320± 0.028 0.370± 0.029 0.377± 0.029 0.426± 0.029
sciq — 0.928± 0.008 0.843± 0.012 0.866± 0.011 0.918± 0.009 0.949± 0.007
triviaqa — 0.259± 0.004 0.050± 0.002 0.115± 0.003 0.196± 0.004 0.409± 0.005
winogrande 0.640± 0.013 0.661± 0.013 0.528± 0.014 0.594± 0.014 0.649± 0.013 0.699± 0.013
wsc 0.365± 0.047 0.500± 0.049 0.375± 0.048 0.404± 0.048 0.548± 0.049 0.548± 0.049
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FairSeq
Task 125M 355M 1.3B 2.7B 6.7B 13B
anli r1 0.316± 0.015 0.322± 0.015 0.331± 0.015 0.318± 0.015 0.338± 0.015 0.340± 0.015
anli r2 0.336± 0.015 0.312± 0.015 0.334± 0.015 0.339± 0.015 0.322± 0.015 0.330± 0.015
anli r3 0.330± 0.014 0.323± 0.014 0.333± 0.014 0.340± 0.014 0.333± 0.014 0.347± 0.014
arc challenge 0.195± 0.012 0.233± 0.012 0.263± 0.013 0.296± 0.013 0.329± 0.014 0.345± 0.014
arc easy 0.426± 0.010 0.468± 0.010 0.565± 0.010 0.625± 0.010 0.665± 0.010 0.680± 0.010
headqa en 0.233± 0.008 0.233± 0.008 0.256± 0.008 0.264± 0.008 0.280± 0.009 0.280± 0.009
hellaswag 0.309± 0.005 0.380± 0.005 0.448± 0.005 0.493± 0.005 0.525± 0.005 0.554± 0.005
Hendrycks abstract algebra 0.260± 0.044 0.180± 0.039 0.230± 0.042 0.250± 0.044 0.240± 0.043 0.260± 0.044
Hendrycks anatomy 0.178± 0.033 0.207± 0.035 0.185± 0.034 0.170± 0.032 0.259± 0.038 0.237± 0.037
Hendrycks astronomy 0.270± 0.036 0.237± 0.035 0.243± 0.035 0.263± 0.036 0.296± 0.037 0.257± 0.036
Hendrycks business ethics 0.330± 0.047 0.410± 0.049 0.340± 0.048 0.350± 0.048 0.380± 0.049 0.340± 0.048
Hendrycks clinical knowledge 0.215± 0.025 0.264± 0.027 0.226± 0.026 0.249± 0.027 0.223± 0.026 0.264± 0.027
Hendrycks college biology 0.285± 0.038 0.201± 0.034 0.243± 0.036 0.222± 0.035 0.271± 0.037 0.306± 0.039
Hendrycks college chemistry 0.310± 0.046 0.290± 0.046 0.350± 0.048 0.300± 0.046 0.280± 0.045 0.240± 0.043
Hendrycks college computer science 0.200± 0.040 0.250± 0.044 0.260± 0.044 0.250± 0.044 0.300± 0.046 0.280± 0.045
Hendrycks college mathematics 0.190± 0.039 0.170± 0.038 0.230± 0.042 0.200± 0.040 0.230± 0.042 0.250± 0.044
Hendrycks college medicine 0.243± 0.033 0.237± 0.032 0.249± 0.033 0.254± 0.033 0.237± 0.032 0.260± 0.033
Hendrycks college physics 0.216± 0.041 0.245± 0.043 0.216± 0.041 0.275± 0.044 0.343± 0.047 0.216± 0.041
Hendrycks computer security 0.240± 0.043 0.290± 0.046 0.300± 0.046 0.240± 0.043 0.230± 0.042 0.320± 0.047
Hendrycks conceptual physics 0.260± 0.029 0.255± 0.029 0.247± 0.028 0.243± 0.028 0.247± 0.028 0.204± 0.026
Hendrycks econometrics 0.246± 0.040 0.272± 0.042 0.246± 0.040 0.281± 0.042 0.219± 0.039 0.263± 0.041
Hendrycks electrical engineering 0.283± 0.038 0.303± 0.038 0.234± 0.035 0.276± 0.037 0.310± 0.039 0.290± 0.038
Hendrycks elementary mathematics 0.246± 0.022 0.214± 0.021 0.233± 0.022 0.233± 0.022 0.246± 0.022 0.198± 0.021
Hendrycks formal logic 0.278± 0.040 0.302± 0.041 0.278± 0.040 0.310± 0.041 0.286± 0.040 0.333± 0.042
Hendrycks global facts 0.200± 0.040 0.210± 0.041 0.190± 0.039 0.150± 0.036 0.220± 0.042 0.160± 0.037
Hendrycks high school biology 0.248± 0.025 0.255± 0.025 0.268± 0.025 0.226± 0.024 0.274± 0.025 0.235± 0.024
Hendrycks high school chemistry 0.217± 0.029 0.207± 0.029 0.256± 0.031 0.281± 0.032 0.217± 0.029 0.266± 0.031
Hendrycks high school computer science 0.240± 0.043 0.230± 0.042 0.270± 0.045 0.240± 0.043 0.350± 0.048 0.280± 0.045
Hendrycks high school european history 0.230± 0.033 0.333± 0.037 0.279± 0.035 0.261± 0.034 0.273± 0.035 0.230± 0.033
Hendrycks high school geography 0.263± 0.031 0.273± 0.032 0.222± 0.030 0.258± 0.031 0.207± 0.029 0.253± 0.031
Hendrycks high school government and politics 0.254± 0.031 0.290± 0.033 0.228± 0.030 0.233± 0.031 0.218± 0.030 0.187± 0.028
Hendrycks high school macroeconomics 0.200± 0.020 0.272± 0.023 0.254± 0.022 0.269± 0.022 0.326± 0.024 0.256± 0.022
Hendrycks high school mathematics 0.204± 0.025 0.189± 0.024 0.170± 0.023 0.226± 0.025 0.200± 0.024 0.193± 0.024
Hendrycks high school microeconomics 0.248± 0.028 0.256± 0.028 0.244± 0.028 0.248± 0.028 0.269± 0.029 0.227± 0.027
Hendrycks high school physics 0.238± 0.035 0.219± 0.034 0.258± 0.036 0.245± 0.035 0.232± 0.034 0.166± 0.030
Hendrycks high school psychology 0.235± 0.018 0.272± 0.019 0.266± 0.019 0.284± 0.019 0.250± 0.019 0.261± 0.019
Hendrycks high school statistics 0.222± 0.028 0.241± 0.029 0.269± 0.030 0.250± 0.030 0.287± 0.031 0.241± 0.029
Hendrycks high school us history 0.240± 0.030 0.284± 0.032 0.299± 0.032 0.299± 0.032 0.314± 0.033 0.294± 0.032
Hendrycks high school world history 0.283± 0.029 0.232± 0.027 0.270± 0.029 0.245± 0.028 0.300± 0.030 0.316± 0.030
Hendrycks human aging 0.274± 0.030 0.309± 0.031 0.323± 0.031 0.291± 0.031 0.296± 0.031 0.274± 0.030
Hendrycks human sexuality 0.252± 0.038 0.366± 0.042 0.328± 0.041 0.359± 0.042 0.359± 0.042 0.351± 0.042
Hendrycks international law 0.157± 0.033 0.223± 0.038 0.240± 0.039 0.281± 0.041 0.264± 0.040 0.231± 0.038
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FairSeq
Task 125M 355M 1.3B 2.7B 6.7B 13B
Hendrycks jurisprudence 0.241± 0.041 0.269± 0.043 0.287± 0.044 0.241± 0.041 0.213± 0.040 0.278± 0.043
Hendrycks logical fallacies 0.196± 0.031 0.221± 0.033 0.233± 0.033 0.196± 0.031 0.245± 0.034 0.221± 0.033
Hendrycks machine learning 0.232± 0.040 0.295± 0.043 0.348± 0.045 0.232± 0.040 0.259± 0.042 0.241± 0.041
Hendrycks management 0.223± 0.041 0.311± 0.046 0.214± 0.041 0.291± 0.045 0.340± 0.047 0.262± 0.044
Hendrycks marketing 0.295± 0.030 0.231± 0.028 0.286± 0.030 0.303± 0.030 0.333± 0.031 0.329± 0.031
Hendrycks medical genetics 0.250± 0.044 0.310± 0.046 0.310± 0.046 0.280± 0.045 0.270± 0.045 0.300± 0.046
Hendrycks miscellaneous 0.258± 0.016 0.301± 0.016 0.264± 0.016 0.249± 0.015 0.284± 0.016 0.268± 0.016
Hendrycks moral disputes 0.269± 0.024 0.246± 0.023 0.220± 0.022 0.260± 0.024 0.269± 0.024 0.272± 0.024
Hendrycks moral scenarios 0.255± 0.015 0.236± 0.014 0.273± 0.015 0.238± 0.014 0.241± 0.014 0.253± 0.015
Hendrycks nutrition 0.252± 0.025 0.261± 0.025 0.297± 0.026 0.297± 0.026 0.330± 0.027 0.304± 0.026
Hendrycks philosophy 0.199± 0.023 0.219± 0.023 0.228± 0.024 0.222± 0.024 0.238± 0.024 0.270± 0.025
Hendrycks prehistory 0.290± 0.025 0.222± 0.023 0.253± 0.024 0.228± 0.023 0.296± 0.025 0.235± 0.024
Hendrycks professional accounting 0.262± 0.026 0.220± 0.025 0.209± 0.024 0.170± 0.022 0.238± 0.025 0.266± 0.026
Hendrycks professional law 0.261± 0.011 0.261± 0.011 0.256± 0.011 0.256± 0.011 0.259± 0.011 0.261± 0.011
Hendrycks professional medicine 0.239± 0.026 0.254± 0.026 0.254± 0.026 0.206± 0.025 0.221± 0.025 0.195± 0.024
Hendrycks professional psychology 0.245± 0.017 0.247± 0.017 0.242± 0.017 0.248± 0.017 0.278± 0.018 0.252± 0.018
Hendrycks public relations 0.236± 0.041 0.245± 0.041 0.264± 0.042 0.227± 0.040 0.291± 0.044 0.291± 0.044
Hendrycks security studies 0.322± 0.030 0.331± 0.030 0.331± 0.030 0.335± 0.030 0.408± 0.031 0.359± 0.031
Hendrycks sociology 0.234± 0.030 0.234± 0.030 0.259± 0.031 0.229± 0.030 0.234± 0.030 0.323± 0.033
Hendrycks us foreign policy 0.250± 0.044 0.300± 0.046 0.300± 0.046 0.310± 0.046 0.370± 0.049 0.330± 0.047
Hendrycks virology 0.289± 0.035 0.301± 0.036 0.319± 0.036 0.355± 0.037 0.295± 0.036 0.331± 0.037
Hendrycks world religions 0.292± 0.035 0.263± 0.034 0.287± 0.035 0.292± 0.035 0.269± 0.034 0.339± 0.036
lambada 0.388± 0.007 0.478± 0.007 0.562± 0.007 0.632± 0.007 0.673± 0.007 0.709± 0.006
logiqa 0.220± 0.016 0.230± 0.017 0.214± 0.016 0.212± 0.016 0.232± 0.017 0.240± 0.017
math algebra 0.000± 0.000 0.000± 0.000 0.001± 0.001 0.003± 0.002 0.004± 0.002 0.003± 0.001
math counting and prob 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.004± 0.003 0.000± 0.000
math geometry 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.002± 0.002 0.000± 0.000 0.000± 0.000
math intermediate algebra 0.000± 0.002 0.000± 0.002 0.000± 0.000 0.001± 0.001 0.006± 0.002 0.002± 0.002
math num theory 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.002± 0.002 0.000± 0.000 0.004± 0.003
math prealgebra 0.000± 0.000 0.000± 0.000 0.003± 0.002 0.002± 0.002 0.001± 0.001 0.000± 0.000
math precalc 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.002± 0.002 0.000± 0.000 0.000± 0.000
openbookqa 0.168± 0.017 0.190± 0.018 0.238± 0.019 0.254± 0.019 0.292± 0.020 0.296± 0.020
piqa 0.668± 0.011 0.690± 0.011 0.731± 0.010 0.751± 0.010 0.762± 0.010 0.769± 0.010
prost 0.215± 0.003 0.257± 0.003 0.257± 0.003 0.230± 0.003 0.272± 0.003 0.252± 0.003
qa4mre 2013 0.285± 0.027 0.335± 0.028 0.327± 0.028 0.380± 0.029 0.370± 0.029 0.380± 0.029
sciq 0.732± 0.014 0.737± 0.014 0.838± 0.012 0.878± 0.010 0.895± 0.010 0.910± 0.009
triviaqa 0.015± 0.001 0.019± 0.001 0.078± 0.003 0.141± 0.003 0.221± 0.004 0.270± 0.004
winogrande 0.513± 0.014 0.529± 0.014 0.600± 0.014 0.620± 0.014 0.644± 0.013 0.674± 0.013
wsc 0.365± 0.047 0.471± 0.049 0.365± 0.047 0.635± 0.047 0.615± 0.048 0.577± 0.049
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